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Abstract. Starting from the Schrödinger equation for a system and a reservoir, we construct a
quantum dynamical map that describes reduced dynamics. We work with an arbitrary initial state
for the system and reservoir, and thus refrain from performing any factorizations. The map is found
to be nonlinear, not completely positive, and not unique. To investigate the physical implications,
the Bloch equations are constructed. If the freedom the new map offers us is fully exploited, then the
classic inequality γ⊥ � γ‖/2 for the damping coefficients must be replaced by a weaker condition.

1. Quantum dynamical map

Any quantum mechanical description of a dynamical process must be based on the Schrödinger
equation. This fundamental statement has far-reaching consequences, if one adheres to the,
let us admit, pedantic point of view that conservative processes do not exist, except for the one
called nature. Then the Schrödinger equation is only valid for a composite SR of two systems
S and R, so that one is obliged to work with a direct product H = HS ⊗ HR of two Hilbert
spaces.

The system S accommodates the dynamical process at hand, and can be monitored by
the experimentalist. For the sake of simplicity, we set the dimension of HS equal to the finite
integer N . The system R, traditionally called the reservoir, corresponds to the outside world.
The evolution in time of S alone is governed by the following reduced density matrix:

ρS(t) = TrR[exp(−iHt)|	(t = 0)〉〈	(t = 0)| exp(iHt)]. (1)

The Hamiltonian h̄H acts on H, and is left unspecified in this work. The normalized initial
state vector of SR is denoted as |	(t = 0)〉.

Since the vector |	(t = 0)〉 is not known to us, the trace in (1) should be performed such
that a relation between the experimentally relevant matrices ρS(t) and ρS(t = 0) is created.
To that end, we utilize a well known [1] and completely general decomposition of the initial
state vector. It reads

|	(t = 0)〉 =
N∑

k=1

|χk ⊗ rk〉. (2)

The set {|χk〉} ⊂ HS is orthonormal, and the set {|rk〉} ⊂ HR is orthogonal. To derive (2), one
should perform the decomposition with the help of the orthonormal set {|χ ′

k〉}; the companion
set {|r ′

k〉} is made orthogonal by means of the unitary transformation |χk〉 = U |χ ′
k〉.
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The right-hand side of (1) can be expressed in terms of the eigenvalues {λk = 〈rk|rk〉}
and eigenvectors {|χk〉} belonging to the reduced density matrix at t = 0, as well as a set of
time-dependent matrices {W(t;m, k)}. These act on HS , and are defined by

〈φ1|W(t;m, k)|φ2〉 = 〈φ1 ⊗ r̂m| exp(−iHt)|φ2 ⊗ r̂k〉 (3)

where |φ1〉 and |φ2〉 are arbitrary elements of HS . The abbreviation |r̂k〉 = 〈rk|rk〉−1/2|rk〉 has
been introduced.

An explicit evaluation of (1) yields

ρS(t) =
N∑

k,l=1

λ
1/2
k λ

1/2
l

∞∑

m=1

W(t;m, k)|χk〉〈χl|W †(t;m, l). (4)

The finite set {|r̂k〉}Nk=1 has been extended to an orthonormal basis for HR. The advantage of (4)
over (1) is that all components on the right-hand side pertain to system S. Hence, one can
read off from (4) the explicit form of the quantum dynamical map �(t), which is defined as
ρS(t) = �(t)[ρS(0)]. This map turns out to be nonlinear, because (4) depends on matrix ρS(0)
through its eigenvalues and eigenvectors. Except for the case that one eigenvalue equals unity
and all others zero, �(t)[ρS(0)] cannot be put into the form

∑∞
j=1 W̃ (t; j)ρS(0)W̃ †(t; j),

with a free choice for the matrices {W̃ (t; j)} that act on HS . In other words, the criterion for
complete positivity [2, 3] is not satisfied.

In deriving (4), the reservoir R has been identified with the complete world surrounding
system S. In a different and more pragmatic approach, R loses its abstract status to become
a concrete physical system. If S stands for a two-level atom, R might be the quantized
electromagnetic radiation field. One assumes that from time t = 0 onwards, the composite
SR constitutes a conservative quantum system. Due to past interactions with the outside world,
the evolution of SR starts from an arbitrary mixed state

ρSR(t = 0) =
∞∑

j=1

µj |	(j)(t = 0)〉〈	(j)(t = 0)|. (5)

The normalized state vectors {|	(j)(t = 0)〉} belong to H, and the positive c-numbers {µj }
add up to unity.

We gain a lot from these concessions. The quantum dynamical map becomes an infinite
sum of maps of type (4), in which the numbers {µj } figure as weights. A convenient

representation is obtained, if use is made of the matrices {Fm}N2−1
m=0 , which act on HS . The new

matrices are chosen such that the relation TrS(FmF
†
n ) = δm,n is true for 0 � m, n � N2 − 1;

F0 equals N−1/21N [3]. One ends up with

ρS(t) =
∞∑

j=1

N∑

k,l=1

N2−1∑

m,n=0

µjλ
(j)1/2
k λ

(j)1/2
l �(j)(t)km,lnFm|χ(j)

k 〉〈χ(j)

l |F †
n . (6)

The time-dependent c-numbers

�(j)(t)km,ln =
∞∑

p=1

TrS [W(j)(t;p, k)F †
m]{TrS [W(j)(t;p, l)F †

n ]}∗ (7)

make up an (N3 × N3)-dimensional matrix. As a consequence of the property

N∑

k,l=1

N2−1∑

m,n=0

�(j)(t)km,lnckmc
∗
ln � 0 (8)

with {ckm} arbitrary complex numbers, the matrix is positive.
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The orthonormality of the set {|r̂ (j)k 〉}∞k=1 implies that for all j

�(j)(t = 0)km,ln = Nδk,lδm,0δn,0. (9)

Consequently, the relation between the initial reduced density matrix on the one hand, and the
sets {µj }, {λ(j)k }, and {|χ(j)

k 〉} on the other hand, is given by

ρS(t = 0) =
∞∑

j=1

N∑

k=1

µjλ
(j)

k |χ(j)

k 〉〈χ(j)

k |. (10)

Conservation of the trace of ρS(t) is guaranteed by a third property of the matrix (7), namely

N2−1∑

m,n=0

�(j)(t)km,lnF
†
n Fm = 1Nδk,l . (11)

To prove (11), one should employ the identity
∞∑

p=1

W(j) †(t;p, k)W(j)(t;p, l) = 1Nδk,l (12)

and the decomposition ρ = ∑N2−1
m=0 Tr(ρF †

m)Fm for arbitrary ρ acting on HS .
The result (6) delivers to us the quantum dynamical map describing reduced dynamics

for an arbitrary initial state of the full density operator. Owing to (11) and the positivity of
matrix (7), the map respects the von Neumann conditions TrS ρS(t) = 1 and ρS(t) � 0.
Unfortunately, the map is nonlinear, not completely positive, and not uniquely defined for a
given evolution of the reduced density matrix ρS(t).

This ‘sting in the tail’ needs some further explanation. Take for the initial full density
operator ρSR(t = 0) a factorized state ρS(t = 0) ⊗ ρR(t = 0) and prescribe for each initial
condition ρS(t = 0) how ρS(t) evolves. The following can now be observed: matrix (7) does
not depend on the integers j, k and l; it can be evaluated on the basis of definition (6) of the
quantum dynamical map; the answer is uniquely determined [4]. If we have no information at
all about the initial state ρSR(t = 0), then the situation becomes more delicate. Specification
of the left-hand side of (6) for arbitrary ρS(t = 0) no longer suffices to compute matrix (7) in
a unique manner. The reason is that, in carrying out the decomposition (10), infinitely many
choices for the sets {µj } and {λ(j)k } can be made.

2. Bloch dynamics

We have seen that, if one wishes to avoid the customary [3,5–8] factorization of initial states,
then one is forced to abandon the concept of complete positivity. We shall demonstrate that it
is indeed rewarding to do so. We integrate the Bloch equations [5]

d

dt
p(t) = −[γ⊥ + iω]p(t)

d

dt
d(t) = −γ‖[d(t) − d∞] (13)

to obtain

p(t) = p(0) exp[−(γ⊥ + iω)t]

d(t) = d∞ + [d(0) − d∞] exp(−γ‖t).
(14)

The coefficients γ⊥, γ‖,ω and d∞ are real-valued. The Bloch dynamics (14) will be constructed
on the basis of map (6). It will be found that the inequality γ⊥ � γ‖/2, one of the hallmarks of
complete positivity [8], must be replaced by a weaker version. This is a relevant conclusion,
because the Bloch equations (13) are known to provide an adequate description of damping
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phenomena in various fields, for instance, nuclear magnetic resonance [6] and quantum
optics [7].

It should be emphasized that we proceed in the axiomatic fashion, which has been outlined
in [8]. That is to say, we substitute (14) into the left-hand side of (6), and seek a solution for
the matrix [�(j)(t)km,ln]. In this setting, one no longer pays attention to relation (7). Of
course, one retains the constraints (8), (9) and (11). We shall not enter into the technical
implementation of the above program, because this does not teach us anything of conceptual
value. We shall simply present a single realization of the Bloch dynamics that makes maximal
use of the freedom map (6) offers us.

As N equals 2 now, the orthonormal set {|1〉, |2〉} spans HS . Quantum expressions for the
polarization and inversion must be obtained on the basis of the relations p(t) = 〈2|ρS(t)|1〉
and 2d(t) = 〈2|ρS(t)|2〉 − 〈1|ρS(t)|1〉, respectively. Hence, for all t � 0 the inequality

|p(t)| � [ 1
4 − d2(t)]1/2 (15)

must accompany (14), otherwise the positivity of ρS(t) is violated.
In proposing a decomposition (10), we invoke the identity

exp(iα) = (sin δ)−1
J∑

j=1

νj (α) exp[iδ(j − 1)] (16)

with 0 � α � 2π , δ = π/2M , J = 2M+1, and the positive integer M arbitrary. All coefficients
{νj (α)} lie inside the interval [0, 1]. For δ(j − 1) � α � δj , those differing from zero, read

νj (α) = sin(δj − α) νj+1(α) = sin(α + δ − δj) (17)

with j = 1, 2, 3, . . . , J − 1. For 2π − δ � α � 2π one has

ν1(α) = sin(α + δ) νJ (α) = − sin α. (18)

In addition to (16), we also employ the fact that the sum

ξ(M, α) = (sin δ)−1
J∑

j=1

νj (α) (19)

converges to unity for M → ∞. Note that ξ lies inside the interval [1, 1/ cos(δ/2)].
We are ready to present our realization of the Bloch dynamics (14). We meet (10) by

means of the choices λ
(j)

k = δk,1 for all j , |χ(1)
2 〉 = |χ(2)

1 〉 = |1〉, |χ(1)
1 〉 = |χ(2)

2 〉 = |2〉,
µj+2 = qνj (α)/ sin δ, and

µ1 = [1 − qξ(M, α)][ 1
2 + d(0)] µ2 = [1 − qξ(M, α)][ 1

2 − d(0)]

|χ(j+2)
1 〉 = exp[−iδ(j − 1)][ 1

2 − d(0)]1/2|1〉 + [ 1
2 + d(0)]1/2|2〉

|χ(j+2)
2 〉 = [ 1

2 + d(0)]1/2|1〉 − exp[iδ(j − 1)][ 1
2 − d(0)]1/2|2〉

(20)

with j = 1, 2, 3, . . . , J , q = |p(0)|[ 1
4 − d2(0)]−1/2, and α = argp(0). As required, the

weights {µj } add up to unity, and for each j the set {|χ(j)

k 〉}k=1,2 is orthonormal. The weights
µ1 and µ2 are non-negative for q � ξ−1; hence, if M tends to infinity, any point of the Bloch
sphere may be chosen as the initial state of the reduced density matrix, except for the points
with d(0) = ± 1

2 , p(0) = 0. However, these choices are not of interest to us, because they
cause γ⊥ to disappear from the dynamics. Finally, observe that in the limitM → ∞ all weights
{µj } differ from zero. Hence, by adopting the setting (20), one fully exploits the freedom of
map (6). As becomes clear from (5), the second important consequence of (20) is that the full
density operator starts from an entangled state.

Next, we have to come up with positive, and thus Hermitian, matrices [�(j)(t)mn] that
turn map (6) into the Bloch dynamics (14). As k = l = 1 is valid throughout, the dependence
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on k and l is suppressed. We adopt the representation |1〉 → (0, 1)T , |2〉 → (1, 0)T ,
{Fk}3

k=1 → {σk/
√

2}3
k=1, with {σk}3

k=1 denoting the Pauli matrices. One checks that the
following choice of nonzero matrix elements works out well:

�(1)(t)00 = *‖,+(t) + 2d∞*‖,−(t)
�(1)(t)11 = �(1)(t)22 = ( 1

2 − d∞)*‖,−(t)
�(2)(t)mn = �(1)(t)mn[d∞ → −d∞]
�(j+2)(t)00 = *‖,+(t)/2 + cos(ωt)[*⊥(t) − r*‖,−(t)]
�(j+2)(t)11 = [ 1

2 + r cos(ωt − 2δj + 2δ)]*‖,−(t)
�(j+2)(t)22 = [ 1

2 − r cos(ωt − 2δj + 2δ)]*‖,−(t)
�(j+2)(t)33 = *‖,+(t)/2 − cos(ωt)[*⊥(t) − r*‖,−(t)]
Im �(j+2)(t)03 = sin(ωt)[*⊥(t) − r*‖,−(t)]
Re�(j+2)(t)12 = r sin(ωt − 2δj + 2δ)*‖,−(t)
Re�(j+2)(t)03 = −Im �(j+2)(t)12 = d∞*‖,−(t)

(21)

with j = 1, 2, 3, . . . , J . The shorthand notation *‖,±(t) = 1 ± exp(−γ‖t), *⊥(t) =
exp(−γ⊥t), r = ( 1

4 − d2
∞)1/2 has been used. We emphasize that our construction of the

Bloch dynamics holds true for any M , so the limit M → ∞ poses no problems.
The choice (21) complies with the constraints (9) and (11). The requirement that for each

j the matrix [�(j)(t)mn] be positive, is equivalent to the inequalities

1 + 2η1d∞ + (η2 − 2η1d∞) exp(−γ‖t) � 0

h(t) = exp(γ⊥t − γ‖t) − exp(−γ⊥t) − 2r exp(−γ‖t) + 2r � 0
(22)

with η1 = ±1 and η2 = ±1. By taking t → ∞ in the upper inequality, the condition γ‖ � 0
follows. We set η2 = −1, divide both inequalities (22) by t , and let t decrease to zero. These
steps bring us to

|d∞| � 1
2 γ‖ � 0 γ⊥ � γ‖[ 1

2 − ( 1
4 − d2

∞)1/2]. (23)

The above conditions are also sufficient. For the case γ⊥ � γ‖/2 one can show this by writing

dh(t)

dt
= γ⊥t (γ‖ − γ⊥) exp(−γ‖t)[y(γ‖t − γ⊥t) − y(γ⊥t)] + (2rγ‖ − γ‖ + 2γ⊥) exp(−γ‖t)

(24)

and exploiting the fact that the function y(x) = [exp(x) − 1]/x does not decrease on the real
axis.

In the discussion below equation (12), we have already pointed out that the choices (20)
and (21) are not uniquely determined. However, constructions of the Bloch dynamics, which
weaken the inequalities (23), do not exist. The reason is that one can prove the equivalence
between (23) and (15), given that ρS(t = 0) � 0. Condition (15) is satisfied by all quantum
dynamical maps of structure (6). The equivalence proof is set up by writing the function
|p(t)|2 + d2(t) as a parabola in d(0) for the choice q = 1. Subsequently, one demands that
the parabola be smaller than 1

4 on the interval |d(0)| � 1
2 . The ensuing inequalities can be

processed in a similar vein as explained below (23).

3. Conclusion

In previous work [9–13], it was argued that the use of a disentangled initial state for the system
and reservoir does not produce the most general description of reduced dynamics. Motivated
by this criticism, we have constructed the quantum dynamical map that describes reduced
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dynamics for an arbitrary initial state. We have found that the property of complete positivity
cannot be maintained.

The new map is indeed capable of providing some new physics. The classic inequality
γ⊥ � γ‖/2 for the damping coefficients of the Bloch equations must be replaced by a weaker
and more natural condition. The latter directly relates to the positivity of the reduced density
matrix. One verifies that the replacement is not necessary if the initial state of the full density
operator is assumed to be pure, so that the map (4) is in command of the dynamics.

Finally, we should be aware of the fact that only the axiomatic part of the job has been
completed. The remaining part consists of specifying a Hamiltonian h̄H and an initial density
operator ρSR(t = 0), which allow us to derive (23) from microscopic expressions for the
Bloch parameters. What are intended are expressions that contain energy eigenvalues of the
unperturbed system S and correlation functions of the reservoir [7]. Of course, the microscopic
theory must be devised such that the positivity of the reduced density matrix is preserved.
Therefore, as a mathematical tool one should not utilize a perturbative approach [14], but
rather a weak-coupling [15] or singular-coupling [16] procedure that is suited for coping with
entangled initial states.
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